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Archimedian Principle (AP)

For every real number x ∈ R, there exists a natural number n ∈ N such that n > x.

Equivalently, for every real number x > 0, there exists a natural number n such that 1
n < x.

Preliminary Definitions

Let A and B be any two sets. Then
x ∈ A ∪B ⇐⇒ x ∈ A or x ∈ B

x ∈ A ∩B ⇐⇒ x ∈ A and x ∈ B

A ⊂ B ⇐⇒ x ∈ A → x ∈ B

If {Ai} is a countable collection of sets, we have the following:

x ∈
∞⋃
i=1

Ai ⇐⇒ x ∈ Ai for some i

x ∈
∞⋂
i=1

Ai ⇐⇒ x ∈ Ai for all i

Let E ⊂ R be any set.

M is an upper bound of E if, for all x ∈ E, x ≤ M . m is a lower bound of E if, for all x ∈ E, x ≥ m.

The supremum of a set E is defined to be the smallest upper bound of the set. That is, sup(E) must satisfy the
following:

1. x ∈ E =⇒ x ≤ sup(E)

2. M is an upper bound of E =⇒ sup(E) ≤ M

The infimum of a set E is defined to be the greatest lower bound of the set. That is, inf(E) must satisfy the
following:

1. x ∈ E =⇒ x ≥ inf(E)

2. m is a lower bound of E =⇒ inf(E) ≥ m

Note that if an upper bound of E belongs to the set E, it is automatically the supremum. Similarly, if a lower
bound of E belongs to the set E, it is automatically the infimum. E.g. 1 ∈ [0, 1] so sup[0, 1] = 1.

Theorem (Nested Interval Theorem)

The intersection of a sequence of nested, closed, bounded (nonempty) intervals I1 ⊃ I2 ⊃ I3 ⊃ ... is nonempty, that
is,

∩∞
n=1In ̸= ∅

Examples.
∞⋂

n=1

[
0,

1

n

]
= {0}

∞⋂
n=1

(
0,

1

n

)
= ∅

∞⋃
n=1

(
1

n
, 1− 1

n

)
= (0, 1)

∞⋂
n=1

(
− 1

n
, 1 +

1

n

)
= [0, 1]

sup(0, 1) = 1 sup
(
(0, 1) ∩Q

)
= 1 inf(0, 1) = 0 inf

(
(0, 1) ∩Q

)
= 0
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Triangle Inequality

Let x, y be real numbers. Then we have:
|x+ y| ≤ |x|+ |y|

|x− y| ≥ ||x| − |y||

Note that this can be written
||x| − |y|| ≤ |x+ y| ≤ |x|+ |y|

||x| − |y|| ≤ |x− y| ≤ |x|+ |y|

Limits

The sequence {an} converges to a real number a if, for every ϵ > 0, there exists an N ∈ N such that

|an − a| < ϵ for all n ≥ N

We write limn→∞ an = a when this definition holds.

The sequence {an} is cauchy if, for every ϵ > 0, there exists N ∈ N such that

|an − am| < ϵ for all n,m ≥ N

Theorem: (Cauchy ⇐⇒ Convergent)

A sequence {an} in the real numbers R converges to some limit a ∈ R if and only if it is Cauchy.

Important examples:

The sequence {1, 1.4, 1.41, 1.414, 1.4142, ...} of rational numbers is cauchy in both R and Q. The sequence converges
to

√
2 in R, but does not converge in Q (since

√
2 is not rational!)

The sequence {1/n} is cauchy and converges to 0.

The sequence of partial sums {
∑n

k=1
1
k}, also written {Sn} where Sn =

∑n
k=1

1
k , and looks like

{1, 1 + 1

2
, 1 +

1

2
+

1

3
, 1 +

1

2
+

1

3
+

1

4
...}

is NOT cauchy and diverges to infinity (write the proof). Note that |Sn+1 − Sn| = 1
n+1 → 0, but this not strong

enough for the sequence of partial sums to be cauchy (hence the need for n and m in the cauchy definition).

The sequence of partial sums {
∑n

k=0
1
2k
}, which looks like

{1, 1 + 1

2
, 1 +

1

2
+

1

4
, 1 +

1

2
+

1

4
+

1

8
, ...}

IS cauchy and converges to 2 (write the proof).

Squeeze Theorem.

If, for all n, we can squeeze the sequence bn between two sequences an and cn, that is,

an ≤ bn ≤ cn for all n ∈ N

Then
lim an ≤ lim bn ≤ lim cn

More generally, limits preserve NONSTRICT inequalities. That is,

an ≤ bn =⇒ lim an ≤ lim bn
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an < bn =⇒ lim an ≤ lim bn

Example: The sequence { 1
n sin (n)} can be squeezed between −1/n and 1/n, that is,

− 1

n
≤ 1

n
sin (n) ≤ 1

n

So it follows that

0 = lim
n→∞

− 1

n
≤ lim

n→∞

1

n
sin (n) ≤ lim

n→∞

1

n
= 0

By squeeze theorem, limn→∞
1
n sin (n) = 0.

Example: (Trick) Consider the sequence {
√
n+ 1−

√
n}. Does the sequence converge?

Answer: Yes. Use the trick

lim(
√
n+ 1−

√
n) = lim

(
√
n+ 1−

√
n)(

√
n+ 1 +

√
n)√

n+ 1 +
√
n

= lim
1√

n+ 1 +
√
n

Now use squeeze theorem

0 ≤ 1√
n+ 1 +

√
n
≤ 1√

n
→ 0

To see rigorously that 1√
n
→ 0, use the limit definition. Fix ϵ > 0. By (AP) there exists N such that N > 1

ϵ2 . For

all n ≥ N ,
1√
n
≤ 1√

N
≤ ϵ

Since N > 1/ϵ2 implies 1/
√
N < ϵ. Make sure you understand every step of this example.

Weierstrass Theorem (!!)

Every bounded sequence in R has a convergent subsequence.

Limits at ∞
We say {an} → ∞, or {an} diverges to ∞, if for every M > 0 there exists an N ∈ N such that, for all n ≥ N ,
an > M .
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Continuity

A function f(x) is continuous at a point x = a if, for every ϵ > 0, there exists a δ > 0 such that

|x− a| < δ =⇒ |f(x)− f(a)| < ϵ

This is equivalent to requiring
lim
x→a

f(x) = f(a)

The function is said to be continuous if it is continuous at all points in its domain.

A function f(x) is uniformly continuous on its domain D if, for every ϵ > 0, there exists a δ > 0 such that

∀ a ∈ D, |x− a| < δ =⇒ |f(x)− f(a)| < ϵ

The choice of δ does NOT depend on the choice of the point a, which is the key difference between uniform continuity
and pointwise continuity.

Theorem (Continuous on Closed, Bounded Interval =⇒ Unif Cts)

A function which is continuous on a closed, bounded interval [a, b] is uniformly continuous on [a, b].

Theorem (Cts Extension ⇐⇒ Uniform Cts)

A function f : (a, b) → R is uniformly continuous on (a, b) if and only if it admits a continuous extension to [a, b],
that is, if and only if the limits

lim
x→a+

f(x), lim
x→b−

f(x)

are well defined. Note that the values of these limits will be exactly f(a) and f(b) of the extension.

Key Examples:

1. The function x2 is uniformly continuous on (0, 1), but NOT uniformly continuous on [1,∞).

Proof: x2 continuously extends to [0, 1] so it is uniformly continuous on (0, 1). To see that it is NOT uniformly
continuous on [1,∞), fix ϵ = 1/2 and suppose for sake of contradiction there exists a δ > 0 such that, for all a ∈
[1,∞),

|x− a| < δ =⇒ |x2 − a2| < 1

2

Since |x2 − a2| = |x+ a||x− a|, fix x = a+ δ
2 , so that certainly |x− a| = δ

2 < δ, but

|x2 − a2| = |x+ a||x− a| = |2a+
δ

2
||δ
2
|

since a ∈ [1,∞) can be chosen arbitrarily large, set a = max{1, 1
δ } so that

|x2 − a2| = |2a+
δ

2
||δ
2
| > |2a||δ

2
| = aδ ≥ 1

Since the uniform continuity definition requires that |x2 − a2| < 1
2 , this is a contradiction.

2. The function sin(1/x) is continuous on (0, 1), but NOT uniformly continuous (since it does not admit a continuous
extension at 0, as limx→0 sin(1/x) DNE)

3. The function x sin(1/x) is uniformly continuous on (0, 1) since it admits a continuous extension to [0, 1].

Theorem: (Unif Cts on Bounded Interval =⇒ Bounded)

Any uniformly continuous function on a bounded interval (a, b) is bounded.
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Example. 1/x is not bounded on (0, 1) and hence not uniformly continuous.

Theorem: (Cts on Closed, Bounded Interval =⇒ Bounded, Assumes Extrema )

Any continuous function on a closed and bounded interval [a, b] is bounded, and moreover assumes its maxima and
minima. That is, there exists at least one point c ∈ [a, b] such that

sup
x∈[a,b]

f(x) = f(c)

and likewise at least one point d ∈ [a, b] such that infx∈[a,b] f(x) = f(d).

**Intermediate Value Theorem (IVT)**

Let f be a continuous function on the closed bounded interval [a, b]. Choose any y such that

inf
[a,b]

f(x) ≤ y ≤ sup
[a,b]

f(x)

Then there exists c ∈ [a, b] such that f(c) = y.

Key example: Let f, g be continuous functions on [a, b] with f(a) < g(a) and f(b) > g(b). Show that there exists
c ∈ [a, b] such that f(c) = g(c).

Proof. Apply MVT to the function f − g. Since f(a) − g(a) < 0 and f(b) − g(b) > 0, we can choose y = 0 in the
statement of the MVT, so there must exist c ∈ [a, b] such that f(c)− g(c) = 0.

Example: The function x3 is continuous on [0, 10] with minimum 0 and maximum 1000. Consider the number
777. Since 0 < 777 < 1000, there must exist c ∈ [0, 10] such that c3 = 777, that is, c is the cube root of 777.

Sequences of Functions

Similar to sequences of numbers, we can consider sequences of functions {fn(x)}. For each fixed value of x, we get
a sequence of numbers.

The sequence {fn} converges pointwise if, for all fixed x ∈ R, the sequence of numbers {fn(x)} converges in the
traditional sense to a limit point f(x) ∈ R.

That is, for all ϵ > 0, there exists N ∈ N such that for all n ≥ N we have |fn(x) − f(x)| < ϵ. We write the
pointwise limit as

lim
n→∞

fn(x) = f(x)

.

The sequence {fn} converges uniformly to a function f if,

for all ϵ > 0 , there exists N ∈ N such that for all n ≥ N , and for all x ∈ D , we have |fn(x)− f(x)| ≤ ϵ

Notice the key difference: For the uniform definition, the choice of N does not depend on the choice of the point x.

Uniform Limit Theorem: (Uniform Limit of Cts Functions is Cts)

If a sequence of continuous functions {fn} converges uniformly to f , then f must be continuous.

Key example. The sequence of functions

{fn(x)} = { nx

1 + nx
}

converges pointwise to 1 when x ̸= 0 and 0 when x = 0. Since the pointwise limit is discontinuous, this implies
that {fn} does NOT converge uniformly.
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Theorem (Uniform Convergence Test) Let {fn(x)} be a sequence of functions with domain D. If there is a
sequence of numbers bn with

|fn(x)| ≤ bn for all n

then
bn → 0 implies {fn} → 0 uniformly.

Note: This theorem is extremely useful in more general cases, due to the fact that {fn} → f uniformly if and only
if {fn − f} → 0 uniformly.
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Differentiability

A continuous function f is differentiable at the point x ∈ R if the below limit exists:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(*)

If the limit exists, we define f ′(x) to be the value of the limit. An equivalent definition is

f ′(x) = lim
y→x

f(y)− f(x)

y − x

Theorem: (Diffble =⇒ Cts)

Let f be a differentiable function on an interval [a, b]. That is, at each point x ∈ [a, b] the above limit (*) exists.
Then f is continuous.

Example. The function f(x) = x2 sin(1/x) is differentiable on (0, 1) and uniformly continuous on (0, 1), in particular
it admits a continuous extension to 0. The derivative also exists on [0, 1], and in particular f ′(0) = 0, but f ′(x) is
not continuous on [0, 1]. Therefore if a function is differentiable, the derivative need not be continuous.

** Mean Value Theorem (MVT) **

Let f be a differentiable function on an interval [a, b]. Then there exists c ∈ [a, b] such that

f ′(c) =
f(b)− f(a)

b− a

Cauchy’s Mean Value Theorem Let f, g be differentiable on [a, b]. Assume further that g′ ̸= 0. Then there
exists c ∈ [a, b] such that

f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)

Consequences of MVT:
1. If the derivative of a function is everywhere 0, the function must be constant.
2. If two functions have the same derivative, they must differ only by a constant.
3. The antiderivative of a function is unique up to addition by a constant.

Theorem: (Bounded Derivative =⇒ Unif Cts)

Let f be a differentiable function on (a, b) such that f ′ is bounded. Then f is uniformly continuous on (a, b).

Monotonicity

A function f is monotone increasing if
a < b =⇒ f(a) ≤ f(b)

and strictly monotone increasing if
a < b =⇒ f(a) < f(b)

Similarly, a function f is monotone decreasing if

a < b =⇒ f(a) ≥ f(b)

and strictly monotone decreasing if
a < b =⇒ f(a) > f(b)

The sign of the derivative characterizes monotonicity, that is

f monotone increasing ⇐⇒ f ′ ≥ 0
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f strictly monotone increasing ⇐⇒ f ′ > 0

f monotone decreasing ⇐⇒ f ′ ≤ 0

f strictly monotone decreasing ⇐⇒ f ′ < 0

Inverse Function Theorem

If f is continuous and strictly monotone (increasing or decreasing) on an open interval I, with nonzero derivative
f ′(a) ̸= 0 at a point a, then the inverse function f−1 is differentiable at f(a) and

(f−1)′(f(a)) =
1

f ′(a)

Example. Consider the function f(x) = x2 on [0, 10] which has inverse f−1(x) =
√
x. Notice that f(3) = 9 and

f ′(3) = 6, so by the above theorem

(f−1)′(f(3)) = (
√
x)′(9) =

1

f ′(3)
=

1

6

Indeed, the derivative of
√
x at x = 9 is 1/6 which you can check by hand.

L’Hopital’s Rule

Informally, L’Hopital’s Rule says the following: consider two differentiable functions f(x) and g(x). Then

lim
f(x)

g(x)
=

±∞
±∞

OR
0

0
=⇒ lim

f(x)

g(x)
= lim

f ′(x)

g′(x)

Note that
∞
0

= ±∞ 0

∞
= 0 are NOT admissible for L’Hopital’s Rule!
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Integrability

Consider an interval [a, b] and a partition Pn = {x0, x1, x2, ...xn} with a = x0 < x1 < x2 < ... < xn−1 < xn = b.

If f is a function which lives on the interval, we will define the Riemann sum to be

Sn :=

n−1∑
i=0

f(x∗
i )∆xi

Here x∗
i ∈ [xi, xi+1] is any point in the i− th subinterval and ∆xi = xi+1 − xi is the subinterval width.

We want an upper and lower bound for these Riemann sums. For each subinterval [xi, xi+1] of the partition Pn, we
define Mi to be the supremum of f on the subinterval, and mi to be the infimum of f on the subinterval. That is,

Mi = sup
x∈[xi,xi+1]

f(x)

mi = inf
x∈[xi,xi+1]

f(x)

Now we define the Upper Riemann sum to be

Un :=

n−1∑
i=0

Mi∆xi

and the Lower Riemann sum to be

Ln :=

n−1∑
i=1

mi∆xi

Now, we choose a sequence of finer and finer partitions {Pn} such that for all i, the subinterval width ∆xi → 0 as
n → ∞. Note that we always have

Ln ≤ Sn ≤ Un

So if for any choice of partitions Pn with ∆xi → 0 for all i as n → ∞, we need the following limits to be equal

lim
n→∞

Ln = lim
n→∞

Un (∗∗)

If this key condition holds, by the squeeze theorem limn→∞ Sn is well defined and we have∫ b

a

f(x)dx := lim
n→∞

n−1∑
i=0

f(x∗
i )(xi+1 − xi)

In this case, f is said to be integrable on the interval [a, b].

NOTE that (∗∗) must hold for ANY choice of finer and finer partitions in order for the integral to be well defined.
However, there is a key theorem which tells us that we only need to find one sequence of partitions:

Theorem. If there exists any sequence of finer and finer partitions Pn (finer meaning ∆xi → 0 as n → ∞ for all i)
such that (∗∗) holds, then the Riemann integral exists.

Integrability Theorems

Theorem. Any continuous function on a closed bounded interval is integrable.

Theorem. If f is a bounded function on a closed bounded interval [a, b] and continuous except at finitely many
points of [a, b], then f is integrable on [a, b].

Theorem. If f is a monotone function on a closed bounded interval [a, b], then f is integrable.

Linearity of the Integral
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If f, g are integrable functions and α, β ∈ R are constants, then∫
αf(x) + βg(x)dx = α

∫
f(x)dx+ β

∫
g(x)dx

That is, the integral is a linear operator. Also, if f, g satisfy f ≤ g, then
∫
f(x)dx ≤

∫
g(x)dx so the integral

preserves order.

Let f be integrable on [a, b], and set M = sup[a,b] f(x) and m = inf [a,b] f(x). Then

m(b− a) ≤
∫ b

a

f(x)dx ≤ M(b− a)

Note the important triangle inequality: ∣∣∣∣∣
∫ b

a

f(x)dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)|dx

Finally, we need not require a < b after defining:∫ b

a

f(x)dx = −
∫ a

b

f(x)dx

Fundamental Theorems of Calculus

Theorem 1. Let f be a differentiable function on [a, b] such that f ′ is integrable on [a, b]. Then∫ b

a

f ′(x)dx = f(b)− f(a)

Theorem 2. Let f(x) be integrable on [a, b]. Fix c ∈ [a, b] and define

F (x) =

∫ x

c

f(x)dx

Then F is continuous on [a, b], and at each point x where f(x) is continuous, F (x) is differentiable and

F ′(x) = f(x)

Integration by Parts

Let f, g be differentiable on [a, b] with integrable derivatives. Then∫ b

a

f(x)g′(x)dx = f(b)g(b)− f(a)g(a)−
∫ b

a

g(x)f ′(x)

Improper Integrals

Define ∫ ∞

a

f(x)dx = lim
b→∞

∫ b

a

f(x)dx

and similarly ∫ b

−∞
f(x)dx = lim

a→−∞

∫ b

a

f(x)dx

If a function is continuous but unbounded on (a, b], (so it blows up at a), we can define the integral to be∫ b

a

f(x)dx = lim
ϵ→0+

∫ b

a+ϵ

f(x)dx
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Example. ∫ 1

0

1√
x
= lim

ϵ→0+

∫ 1

ϵ

1√
x

Similarly, if the function is continuous but unbounded on [a, b), (so it blows up at b) we define∫ b

a

f(x)dx = lim
ϵ→0+

∫ b−ϵ

a

f(x)dx

Series

Consider a sequence {an} and now consider the sequence of partial sums

{Sn} = {
n∑

i=1

ai}

If {Sn} converges, we define
∞∑
i=1

ai = lim
n→∞

Sn

and we say that the series on the left hand side converges. If the sequence of partial sums {Sn} fails to converge,
we say that the series diverges.

n-th Term Test for Divergence

If {an} ̸→ 0, then the series diverges.

p-Series Test

∞∑
n=1

1

np
converges ⇐⇒ p > 1

∞∑
n=1

1

np
diverges ⇐⇒ p ≤ 1

Geometric Series Test

∞∑
n=0

Crn converges to
C

1− r
⇐⇒ |r| < 1

Note that here the series starts at n = 0, which is just indicating that C is the first term of the sequence. For
example,

∞∑
n=5

3

5n
=

3/55

1− 1/5

since 3/55 is the first term of the geometric series with common ratio r = 1/5.

Comparison Test

If |an| ≤ bn, then
∑

bn converges =⇒
∑

an converges. Also,
∑

an diverges =⇒
∑

bn diverges.

Limit Comparison Test

If 0 < lim
∣∣∣an

bn

∣∣∣ < ∞, then
∑

an and
∑

bn will converge or diverge together.
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Ratio Test

If

lim

∣∣∣∣an+1

an

∣∣∣∣ < 1

then the series converges. If the above limit is > 1 then the series diverges. If the above limit is = 1 then we
cannot conclude anything.

Alternating Series Text

An alternating series is of the form
∑

(−1)nan where an > 0. The terms of the sequence we are summing over
‘alternate’ between positive and negative.

Conditional Convergence.

If lim |an| = 0 then the alternating series converges conditionally.

Absolute Convergence.

If
∑

|an| converges then the alternating series converges absolutely (this is strongest).

Integral Test

If a sequence {an} is positive and monotone decreasing, and we find a positive, monotone decreasing function f
such that f(n) = an for all n, then the series

∑
an will converge or diverge with the integral

∫∞
1

f(x)dx.

Finally, note that a series
∑∞

n=1 an converges if and only if its tail converges, that is, for any choice of N ,
∑∞

n=N an
converges. Therefore if you don’t like the first few terms of a series, just chop them off! You will affect the value of
the summation, but not the convergence.

Series of Functions

Weierstrass M-Test

A series of functions
∑∞

k=1 fk(x) on an interval I converges uniformly on I if there is a convergent series of positive
terms

∞∑
k=1

Mk < ∞

such that |fk(x)| ≤ Mk for all x ∈ I and all k.

Example (Comparison Test Trick): Consider the series

∞∑
n=1

2n+ 1

n4 − 3n2 + 2

We can show convergence by limit comparison with 1/n3, and this is the best argument. However, to produce a
direct comparison, we choose

2n+ 1

n4 − 3n2 + 2
≤ 2n+ n

n4 − 1
2n

4 + 0
whenever 3n2 <

1

2
n4

Lets examine the above inequality. To make a fraction bigger, I can make the numerator bigger and/or the denominator
smaller. Replacing 1 with n in the numerator makes the fraction bigger. Then I replace 2 with 0 in the denominator
to make the denominator smaller. Finally, I have to require 3n2 < 1

2n
4 to replace the −3n2 with a − 1

2n
4 to make

the denominator smaller.
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Requiring 3n2 < 1
2n

4 is equivalent to 6 < n2, so 3 ≤ n. Thus we have

2n+ 1

n4 − 3n2 + 2
≤ 2n+ n

n4 − 1
2n

4 + 0
=

3n
1
2n

4
=

6

n3
whenever n ≥ 3

This trick produces a direct comparison with 6/n3, and
∑

6/n3 converges by p-series test with p = 3.
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