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Archimedian Principle (AP)

For every real number x € R, there exists a natural number n € N such that n > z.

Equivalently, for every real number x > 0, there exists a natural number n such that % < z.

Preliminary Definitions
Let A and B be any two sets. Then
r€AUB<=zxcAorxzeB
reANB<zcAandzr €B
ACB<«<—zxcA—zeB

If {A;} is a countable collection of sets, we have the following:

o]
xEUAi@xEAiforsomei
i=1

T € ﬂAi(ﬁxeAiforalli
i=1
Let £ C R be any set.

M is an upper bound of F if, for all x € E, x < M. m is a lower bound of E if, for all z € E, x > m.

The supremum of a set E is defined to be the smallest upper bound of the set. That is, sup(F) must satisfy the
following:
1.z € E= 2 <sup(FE)

2. M is an upper bound of £ = sup(F) < M

The infimum of a set E is defined to be the greatest lower bound of the set. That is, inf(E) must satisfy the

following:
l. 2 € E =z > inf(E)

2. m is a lower bound of F = inf(E) > m

Note that if an upper bound of E belongs to the set FE, it is automatically the supremum. Similarly, if a lower
bound of E belongs to the set E, it is automatically the infimum. E.g. 1 € [0,1] so sup[0, 1] = 1.

Theorem (Nested Interval Theorem)
The intersection of a sequence of nested, closed, bounded (nonempty) intervals I1 D Is D I3 D ... is nonempty, that

is,

Moy # 0

Examples.

n=1
6(07;)9
[j (;1—» = (0,1)

sup(0,1) =1 sup((0,1)NQ) =1 inf(0,1)=0 inf((0,1)NQ) =0



Triangle Inequality

Let x,y be real numbers. Then we have:
|z +y| < [z] + [y

|z =yl > [lz] = yll

Note that this can be written
lz| = [yl] < [z +y| < |2|+ |y

|z = lyll <o —y| < |z + [y]

Limits
The sequence {a,} converges to a real number « if, for every e > 0, there exists an N € N such that
la, —al <e foralln>N

We write lim,, . a,, = @ when this definition holds.
The sequence {a,} is cauchy if, for every € > 0, there exists N € N such that
lan, —am| < e foralln,m >N
Theorem: (Cauchy <= Convergent)
A sequence {ay} in the real numbers R converges to some limit a € R if and only if it is Cauchy.
Important examples:

The sequence {1,1.4,1.41,1.414,1.4142, ...} of rational numbers is cauchy in both R and Q. The sequence converges
to v/2 in R, but does not converge in Q (since v/2 is not rationall)

The sequence {1/n} is cauchy and converges to 0.

The sequence of partial sums {>__, +}, also written {S,} where S,, = >"7'_, £, and looks like

1 11 1 1 1
I+-+2, 144+ +>.

1, 14 -
{’+2’23 234}

is NOT cauchy and diverges to infinity (write the proof). Note that |S,+1 — Su| = n%rl — 0, but this not strong

enough for the sequence of partial sums to be cauchy (hence the need for n and m in the cauchy definition).

The sequence of partial sums {3 j._, 5}, which looks like

1 1 1 1 1 1
1.1+-,14+—-4+—=-14+=4+-4+—=....
{1, S TR S S It }

IS cauchy and converges to 2 (write the proof).
Squeeze Theorem.

If, for all n, we can squeeze the sequence b,, between two sequences a,, and c,, that is,
ap <b,<e¢, forallneN

Then
lima, <limbd, <limc,

More generally, limits preserve NONSTRICT inequalities. That is,

an < b, = lima, <limb,



an < b, = lima,, <limb,,

Example: The sequence {1 sin(n)} can be squeezed between —1/n and 1/n, that is,

1 1 . 1
—— < —sin(n) < -
n-n n
So it follows that

. 1 .1 o1
0= lim —— < lim —sin(n) < lim — =0

By squeeze theorem, lim,, . %sin (n) =0.
Example: (Trick) Consider the sequence {v/n + 1 — y/n}. Does the sequence converge?

Answer: Yes. Use the trick

. o (Wn+l=yn)(Vn+1+Vn) 1
lim(vn+1—v/n) =lim JitTt v —hmi\/er\/ﬁ

Now use squeeze theorem
1 1
0<

—_—— < — =0
“Vn+l+yn T Vn
To see rigorously that ﬁ — 0, use the limit definition. Fix ¢ > 0. By (AP) there exists N such that N > e% For
alln > N,

Since N > 1/€% implies 1/v/ N < e. Make sure you understand every step of this example.
Weierstrass Theorem (!!)

Every bounded sequence in R has a convergent subsequence.

Limits at oo

We say {a,} — oo, or {a,} diverges to oo, if for every M > 0 there exists an N € N such that, for all n > N,
anp > M.



Continuity

A function f(x) is continuous at a point z = a if, for every € > 0, there exists a § > 0 such that
[z —a| <6 = |f(z) - fla)| <e

This is equivalent to requiring

lim f(z) = f(a)

r—a

The function is said to be continuous if it is continuous at all points in its domain.

A function f(x) is uniformly continuous on its domain D if, for every € > 0, there exists a § > 0 such that
Vae D, |z—al <d=|f(z)— fla)| <€

The choice of § does NOT depend on the choice of the point a, which is the key difference between uniform continuity
and pointwise continuity.

Theorem (Continuous on Closed, Bounded Interval = Unif Cts)
A function which is continuous on a closed, bounded interval [a, b] is uniformly continuous on [a, b].
Theorem (Cts Extension <= Uniform Cts)

A function f : (a,b) — R is uniformly continuous on (a,b) if and only if it admits a continuous extension to [a, ],
that is, if and only if the limits

lim f(z), lm f(x)

z—a™t T—b—

are well defined. Note that the values of these limits will be exactly f(a) and f(b) of the extension.

Key Examples:

2

1. The function x* is uniformly continuous on (0, 1), but NOT uniformly continuous on [1, c0).

Proof: x? continuously extends to [0,1] so it is uniformly continuous on (0, 1). To see that it is NOT uniformly
continuous on [1,00), fix ¢ = 1/2 and suppose for sake of contradiction there exists a § > 0 such that, for all a €
[17 00)7

|t —a| < 6 = |2% —a?| <

|~

Since |22 — a?| = |z + a||z — a|, fix z = a + £, so that certainly |z —a| = § < 4, but

§ .0
2_ 2
—a? = —al=12a+ 2112
(2% —a®| = o+ allo — ] =20+ 33|
since a € [1,00) can be chosen arbitrarily large, set a = max{1, %} so that
5,0 )
2_ 2
—a? =20+ 2|2 > |2a]|2 = ad > 1
% —a?| = [2a+ 212 > [2all 5] = ad >
Since the uniform continuity definition requires that |22 — a?| < 1, this is a contradiction.

2. The function sin(1/z) is continuous on (0, 1), but NOT uniformly continuous (since it does not admit a continuous
extension at 0, as lim,_,osin(1/x) DNE)

3. The function z sin(1/x) is uniformly continuous on (0, 1) since it admits a continuous extension to [0, 1].
Theorem: (Unif Cts on Bounded Interval —- Bounded)

Any uniformly continuous function on a bounded interval (a,b) is bounded.



Example. 1/z is not bounded on (0,1) and hence not uniformly continuous.
Theorem: (Cts on Closed, Bounded Interval =—> Bounded, Assumes Extrema )

Any continuous function on a closed and bounded interval [a, b] is bounded, and moreover assumes its maxima and
minima. That is, there exists at least one point ¢ € [a, b] such that

sup f(z) = f(c)

z€la,b]

and likewise at least one point d € [a,b] such that inf,c[q 4 f(2) = f(d).
**Intermediate Value Theorem (IVT)**

Let f be a continuous function on the closed bounded interval [a, b]. Choose any y such that

inf f(z) <y < sup f(x)
[a,b] [a,b]

Then there exists ¢ € [a, b] such that f(c) =y.

Key example: Let f, g be continuous functions on [a, b] with f(a) < g(a) and f(b) > g(b). Show that there exists
¢ € [a,b] such that f(c) = g(c).

Proof. Apply MVT to the function f — g. Since f(a) — g(a) < 0 and f(b) — g(b) > 0, we can choose y = 0 in the
statement of the MVT, so there must exist ¢ € [a,b] such that f(c) — g(c) = 0.

Example: The function 2? is continuous on [0, 10] with minimum 0 and maximum 1000. Consider the number

777. Since 0 < 777 < 1000, there must exist ¢ € [0, 10] such that ¢® = 777, that is, ¢ is the cube root of 777.
Sequences of Functions

Similar to sequences of numbers, we can consider sequences of functions { f,,(z)}. For each fixed value of z, we get
a sequence of numbers.

The sequence { f,} converges pointwise if, for all fixed 2 € R, the sequence of numbers {f,,(z)} converges in the
traditional sense to a limit point f(z) € R.

That is, for all e > 0, there exists N € N such that for all n > N we have |f,(z) — f(z)] < e. We write the
pointwise limit as

lim f,(z)= f(x)

n—oo

The sequence {f,} converges uniformly to a function f if,

for all € > 0, there exists N € N such that for all n > N, and for all x € D , we have |f,(x) — f(z)| <e

Notice the key difference: For the uniform definition, the choice of N does not depend on the choice of the point x.
Uniform Limit Theorem: (Uniform Limit of Cts Functions is Cts)
If a sequence of continuous functions {f,} converges uniformly to f, then f must be continuous.

Key example. The sequence of functions
nx

{hal@)} = {5

converges pointwise to 1 when @ # 0 and 0 when = 0. Since the pointwise limit is discontinuous, this implies
that {f,} does NOT converge uniformly.




Theorem (Uniform Convergence Test) Let {f,(z)} be a sequence of functions with domain D. If there is a

sequence of numbers b,, with
|frn(z)| < by, for all n

then
b, — 0 implies {f,} — 0 uniformly.

Note: This theorem is extremely useful in more general cases, due to the fact that {f,} — f uniformly if and only
if {f — f} — 0 uniformly.



Differentiability

A continuous function f is differentiable at the point x € R if the below limit exists:

Fle) — tim L@ @)

h—0 h

If the limit exists, we define f’(x) to be the value of the limit. An equivalent definition is

y—e Y —o
Theorem: (Diffble = Cits)

Let f be a differentiable function on an interval [a,b]. That is, at each point z € [a, b] the above limit (*) exists.
Then f is continuous.

Example. The function f(x) = 2?sin(1/z) is differentiable on (0, 1) and uniformly continuous on (0, 1), in particular
it admits a continuous extension to 0. The derivative also exists on [0,1], and in particular f'(0) = 0, but f/(z) is
not continuous on [0, 1]. Therefore if a function is differentiable, the derivative need not be continuous.

** Mean Value Theorem (MVT) **

Let f be a differentiable function on an interval [a,b]. Then there exists ¢ € [a, b] such that

ERRIUES (0

Cauchy’s Mean Value Theorem Let f, g be differentiable on [a, b]. Assume further that ¢’ # 0. Then there
exists ¢ € [a, b] such that

Consequences of MVT:

1. If the derivative of a function is everywhere 0, the function must be constant.
2. If two functions have the same derivative, they must differ only by a constant.
3. The antiderivative of a function is unique up to addition by a constant.

Theorem: (Bounded Derivative = Unif Cts)

Let f be a differentiable function on (a,b) such that f’ is bounded. Then f is uniformly continuous on (a,b).

Monotonicity

A function f is monotone increasing if
a<b= f(a) < f(b)

and strictly monotone increasing if
a<b= f(a) < f(b)

Similarly, a function f is monotone decreasing if
a<b= f(a) > f(b)

and strictly monotone decreasing if
a<b= f(a) > f(b)

The sign of the derivative characterizes monotonicity, that is

f monotone increasing <= f' >0



strictly monotone increasing <= f' > 0
y g
f monotone decreasing <= f' <0
strictly monotone decreasing < f' <
f strictly tone d ing f <0
Inverse Function Theorem

If f is continuous and strictly monotone (increasing or decreasing) on an open interval I, with nonzero derivative
f'(a) # 0 at a point a, then the inverse function f~! is differentiable at f(a) and

Example. Consider the function f(z) = 22 on [0, 10] which has inverse f~!(z) = /z. Notice that f(3) = 9 and
1'(3) = 6, so by the above theorem

—1\/ _ T ’ — L _ 1
() = V' O) = 53 = 5

Indeed, the derivative of \/z at x = 9 is 1/6 which you can check by hand.
L’Hopital’s Rule
Informally, L'Hopital’s Rule says the following: consider two differentiable functions f(z) and g(x). Then

W@ o L0 @) )
o) = o0 OB o = Iy = )

Note that 0
% =400 — =0 are NOT admissible for L’Hopital’s Rule!
00



Integrability
Consider an interval [a,b] and a partition P, = {xo, z1, T2, ...k, } With a = o < 1 < 22 < ... < Tp_1 < T,, = b.

If f is a function which lives on the interval, we will define the Riemann sum to be

n—1

Sy, = Z flah)Ax;

=0

Here x} € [z;,x;41] is any point in the ¢ — th subinterval and Az; = ;41 — x; is the subinterval width.

We want an upper and lower bound for these Riemann sums. For each subinterval [x;,z;11] of the partition P,, we
define M; to be the supremum of f on the subinterval, and m; to be the infimum of f on the subinterval. That is,

M;= sup f(x)

z€[w;,wiq1]

m; = inf  f(x)

TE[Xi,Tit1]

Now we define the Upper Riemann sum to be
n—1
Un = Z MiAJ?i
i=0

and the Lower Riemann sum to be .
e

L, := Z m;Ax;
i=1

Now, we choose a sequence of finer and finer partitions {P,} such that for all ¢, the subinterval width Az; — 0 as
n — oo. Note that we always have

So if for any choice of partitions P, with Az; — 0 for all i as n — oo, we need the following limits to be equal

lim L, = lim U, ()

n—oo n—oo

If this key condition holds, by the squeeze theorem lim,, .., S, is well defined and we have
b n—1
| raia = im > fla)aiss — )

In this case, f is said to be integrable on the interval [a, b].

NOTE that (x%) must hold for ANY choice of finer and finer partitions in order for the integral to be well defined.
However, there is a key theorem which tells us that we only need to find one sequence of partitions:

Theorem. If there exists any sequence of finer and finer partitions P, (finer meaning Az; — 0 as n — oo for all )
such that (xx) holds, then the Riemann integral exists.

Integrability Theorems

Theorem. Any continuous function on a closed bounded interval is integrable.

Theorem. If f is a bounded function on a closed bounded interval [a,b] and continuous except at finitely many
points of [a, b], then f is integrable on [a, b].

Theorem. If f is a monotone function on a closed bounded interval [a,b], then f is integrable.

Linearity of the Integral



If f, g are integrable functions and «, 8 € R are constants, then

[af@ +sgade=a [ sz 5 [ gla)do

That is, the integral is a linear operator. Also, if f, g satisfy f < g, then [ f(z)dz < [ g(z)dz so the integral
preserves order.

Let f be integrable on [a,b], and set M = supy, ;) f(x) and m = inf(, y f(z). Then

b
m(b— a) < / F@)dz < M(b— a)

[ e < [ e

Finally, we need not require a < b after defining:

/abf(x)dx = —/baf(x)da:

Fundamental Theorems of Calculus

Note the important triangle inequality:

Theorem 1. Let f be a differentiable function on [a, b] such that f’ is integrable on [a,b]. Then

b
/ f(@)dz = f(b) - f(a)

Theorem 2. Let f(z) be integrable on [a,b]. Fix ¢ € [a, ] and define

0= [t

Then F is continuous on [a, b], and at each point « where f(z) is continuous, F(z) is differentiable and

Integration by Parts
Let f, g be differentiable on [a, b] with integrable derivatives. Then

b b
/ f(@)g (@)dz = (b)g(b) — F(a)gla) - / o(0)f' ()

Improper Integrals
Define

and similarly
b b
| f@ys = tim RE

If a function is continuous but unbounded on (a, b], (so it blows up at a), we can define the integral to be

b b
/ f(@)dx = lim flx)dx

e=0% Jate

10



Example.

/1 1 i /1 1
 — lim =
0 VT =0t ).

Similarly, if the function is continuous but unbounded on [a,b), (so it blows up at b) we define

b b—e
/f(a:)dx: lim f(z)dx

e—=0t J,

Series

Consider a sequence {a,} and now consider the sequence of partial sums
n
{Su} ={>_ ai}
i=1

If {S,} converges, we define

0
E a; = lim Sn
n— oo

i=1
and we say that the series on the left hand side converges. If the sequence of partial sums {S,} fails to converge,
we say that the series diverges.

n-th Term Test for Divergence
If {a,} # 0, then the series diverges.

p-Series Test

o0

1
Z — converges <= p>1
np
n=1
— 1
Z — diverges «<—=p <1
n=1 P

Geometric Series Test

> C
Z Cr™ converges to 1 —=rl<1
n=0 -r
Note that here the series starts at n = 0, which is just indicating that C is the first term of the sequence. For
example,
— 3 _ 3/5°
—om o 1-1 /b

since 3/5° is the first term of the geometric series with common ratio r = 1/5.

Comparison Test

If |an| < by, then > by, converges =) a,, converges. Also, > a,, diverges => > b,, diverges.
Limit Comparison Test

If 0 < lim < 00, then > a, and > b, will converge or diverge together.

an
b

11



Ratio Test

If

Qn41
QA

then the series converges. If the above limit is > 1 then the series diverges. If the above limit is = 1 then we
cannot conclude anything.

Alternating Series Text

An alternating series is of the form > (—1)"a, where a,, > 0. The terms of the sequence we are summing over
‘alternate’ between positive and negative.

Conditional Convergence.

If lim |a,,| = O then the alternating series converges conditionally.

Absolute Convergence.

If > |an| converges then the alternating series converges absolutely (this is strongest).
Integral Test

If a sequence {a,} is positive and monotone decreasing, and we find a positive, monotone decreasing function f
such that f(n) = a, for all n, then the series > a,, will converge or diverge with the integral floo f(x)dx.

Finally, note that a series > -, a,, converges if and only if its tail converges, that is, for any choice of N, Y > \ ay,

converges. Therefore if you don’t like the first few terms of a series, just chop them off! You will affect the value of
the summation, but not the convergence.

Series of Functions

Weierstrass M-Test

A series of functions Y_,—; fi(z) on an interval I converges uniformly on I if there is a convergent series of positive

terms
o0
Z M, < oo
k=1

such that |fi(z)| < My for all x € T and all k.

Example (Comparison Test Trick): Consider the series

We can show convergence by limit comparison with 1/n3, and this is the best argument. However, to produce a
direct comparison, we choose

2n+1 2n+n
n* —3n24+2 " nt—1nt+0

4

1
whenever 3n? < in

Lets examine the above inequality. To make a fraction bigger, I can make the numerator bigger and/or the denominator
smaller. Replacing 1 with n in the numerator makes the fraction bigger. Then I replace 2 with 0 in the denominator

to make the denominator smaller. Finally, I have to require 3n? < %n‘l to replace the —3n? with a —%n‘l to make

the denominator smaller.

12



Requiring 3n? < in? is equivalent to 6 < n?, so 3 < n. Thus we have

2n+1 2n+n 3n heneve > 3
= —— = —  whenever n
n4—3n2+2_n4—%n4+0 %n‘l n3 -

This trick produces a direct comparison with 6/n3, and Y 6/n3 converges by p-series test with p = 3.

13



